Search
Displaying results 801 to 810 of 1491.
Neuroinflammation and Neurodegeneration
What kind of role play infections and the associated inflammatory reactions for the progression or even for the onset of neurodegenerative diseases? Recurrent infections and the involved inflammation may trigger a series of processes in the brain that finally lead to neuronal damage due to the immune response. Thus, better understanding of neurodegenerative processes could improve the therapeutic approach in neurodegenerative disease.
Microbial Proteomics
A genome contains all the information that is needed to build an organism like, for instance, a bacterium. One of functional genomics’ central questions is: How are these blueprints implemented so that relatively simple molecular codes ultimately give rise to a microorganism with the potential of getting us sick? What are some of the underlying mechanisms and under what conditions do they become activated?
Microbial Interactions and Processes
Microorganisms in the environment are living in complex and interacting communities. Also the surfaces of the human body are inhabited by microorganisms, where the bacterial cell number significantly exceeds that of the human cells. These communities have co-evolved with the human host and are important for human health. They can, however, also be a reservoir for pathogenic microorganisms.
Cell Biology
Recent reports published by the World Health Organization (WHO) entitled "The Global Burden of Disease" (GBD) highlights the importance of research on host-pathogen interactions. Evolution is an ongoing process driving the development of highly virulent and multi-resistant bacteria strains or so called “emerging pathogens“. A deeper understanding of the complex interaction between pathogenic bacteria and their host is inevitable to face these problems in the future. As Cell biologists, we address host-pathogen interaction on the level of single cells, embodying the smallest living unit on both sides. Upon contact, pathogens need to manipulate the normal behavior of host cells in order to establish a niche for survival and to evade the hosts defense mechanisms. We study these induced changes on the cellular and molecular level, in order to exactly understand which host process is targeted by a given virulence mechanism an why.
Drug Design and Optimization
In order to combat the increasing number of resistant pathogens, the development of new anti-infective drugs is an important goal for pharmaceutical research. Efficient medications with novel modes-of-action to fight infectious diseases are urgently needed. Below, you may read more about the design, identification and optimisation of new drug candidates. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .
Drug Bioinformatics
Bioinformatics is instrumental in all areas of molecular biology, from analysis of genome sequences towards predicting three-dimensional structure of drug-target complexes. We apply cutting-edge bioinformatics and computer science techniques for discovery of novel resistance mechanisms and predicting mode-of-action of bioactive compounds. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
Recombinant Protein Expression
Proteins play an important role in infectious diseases. They not only take over central functions in the invasion and replication of pathogens, but also in the defensive reaction of our body or as a drug. For a detailed investigation of proteins, scientists often require them in large amounts and extremely pure state. Read more about how proteins are artificially produced and purified.
Core Facility of Comparative Medicine
To be able to investigate diseases, understand the relationships between pathogens and their host and to develop novel strategies against pathogens, the scientists at the HZI depend on experiments that involve the use of laboratory animals. For this purpose, the HZI operates a central animal facility on campus. The primary task of this service unit is the breeding and keeping of laboratory mice as well as provision of services for the scientists of the HZI, centered around laboratory animal science.
Vaccinology and Applied Microbiology
Vaccination is the most efficient strategy to prevent infectious diseases. The art of the vaccine researcher lies in finding substances that prevent us from falling ill with diseases such as influenza or viral hepatitis. But what makes a vaccine successful and ensures effective protection? Our scientists study the reaction of the immune system to answer that question – and to develop better vaccination strategies.
Structural Infection Biology
To understand and eventually manipulate pathways that control the interaction of pathogens (e.g. bacteria, virus, parasite) with their hosts (e.g. human, plants) requires an interdisciplinary research approach, which often combines different fields of research such as cell biology and microbiology. In our laboratory, however, we take a closer look at the processes occurring during an infection at the cellular and atomic level by harnessing a variety of modern biophysical methods that allow addressing the spatio-temporal dynamics of an infectious disease at a high resolution. The department is located at the Center for Structural Systems Biology ( CSSB ) at the heart of the Germany’s largest accelerator center DESY (Deutsches Elektronen-Synchrotron) in Hamburg.