Search

Displaying results 11 to 20 of 72.

Research Group

Integrative Informatics for Infection Biology

Recent years have seen accelerating development of high-throughput technologies in infection biology. Now, thousands of genetic loci can be simultaneously interrogated in a single experiment, providing an array of measurements of transcription, translation, regulatory interactions, and fitness effects. The bottleneck in advancing our understanding of pathogens now lies in moving from hypothesis-free screening through data integration to hypothesis generation. We develop new statistical, computational, and visualization approaches to overcome this bottleneck in the interpretation of complex post-genomic data. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Research Group

Experimental Virology

Viruses are tiny vehicles that transport biological information to reprogram the functions of human, animal, or plant cells in order to replicate. So-called "enveloped" viruses consist of only one layer of proteins, are filled with genetic material, and are surrounded by a thin shell of lipids in which viral proteins are embedded. Even though viruses are tiny and have a simple build, viral pathogens such as the hepatitis C virus (HCV), respiratory syncytial virus (RSV), and SARS-CoV-2 have the potential to threaten the health of millions of people. Here at the Institute for Experimental Virology, we focus on fundamental and translational RNA virus research. Our research groups combine the expertise of molecular and cell biological approaches with computational methods to help elucidate viral replication mechanisms to develop new therapeutic and preventive strategies.

Research Group

Genome Architecture and Evolution of RNA Viruses

RNA viruses are a major threat to human health and responsible for millions of deaths each year. Their replication is orchestrated by the RNA genome, which encodes for viral proteins needed to hijack the host cell. Traditionally, infectious disease research has focused on blocking viral replication by inhibiting these proteins. However, we now appreciate that the genomes of RNA viruses are not just passive carriers of protein coding information, but active participants in the viral infection process through the action of non-coding RNA. We study the structure and function of viral non-coding RNA, with the goal of harnessing the resulting knowledge in the design of next generation RNA-based therapies. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI) .

Research Group

Microbial Proteomics

A genome contains all the information that is needed to build an organism like, for instance, a bacterium. One of functional genomics’ central questions is: How are these blueprints implemented so that relatively simple molecular codes ultimately give rise to a microorganism with the potential of getting us sick? What are some of the underlying mechanisms and under what conditions do they become activated?

Research Group

Microbial Natural Products

Even today efficient drugs against many diseases are missing but finding new active substances is very complex. Support comes out of the ground. Myxobacteria are soil-living microorganisms that produce many active agents. Here you learn more about the search for new compounds with biological activity. This department is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Microbial Interactions and Processes

Microorganisms in the environment are living in complex and interacting communities. Also the surfaces of the human body are inhabited by microorganisms, where the bacterial cell number significantly exceeds that of the human cells. These communities have co-evolved with the human host and are important for human health. They can, however, also be a reservoir for pathogenic microorganisms.

Research Group

Model Systems for Infection and Immunity

In infection research experiments on cells and mice have a pivotal role. Frequently such model systems have to be tailored to allow tackling a specific scientific question. To this end, genetic modification of cell lines and mice is being pursued.

Research Group

Human-Microbe Systems Bioinformatics

The human body encompasses fewer human cells than microbes. They constantly interact with each other and the host and greatly affect an individual's health and well-being. In our group, we develop and apply state-of-the-art bioinformatics software to study the human-microbe systems and aim to discover natural products involved in communication between the two realms. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Genome Mining for Secondary Metabolites

The misuse of antibiotics on a global scale has led to an ever-growing antibiotic resistance crisis. Novel antimicrobial compounds are urgently needed. Microorganisms are considered to be one of the most prolific sources for natural product drugs including antibiotics. Developing novel genome mining approaches to harness the potential of the underexplored biosynthetic gene pathways and discover novel microbial natural products, is a potential antibiotic resistance crisis mitigation path. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Experimental Infection Research

If we are attacked by a virus, the immune system reacts within a matter of hours. Highly specialized immune cells recognise the pathogen and release highly efficient messengers, which activate the immune system. These messengers include the interferons, which ensure that individual host cells are mildly infected . At the same time, interferons can also influence the course of the immune response and the memory of the immune system. Without these messengers virus infections - which we normally overcome almost unnoticeably - become fatal within just a few days. The group Experimental Infection Research is based at the TWINCORE in Hannover.