Search

Displaying results 1 to 10 of 83.

Research Group

Molecular Principles of RNA Phages

The research group led by Jens Hör investigates the dynamics of infection, host takeover, and anti-phage defense during the interaction between RNA phages and their hosts. They seek to understand the molecular principles underlying these processes to develop new and improved antibacterial strategies such as phage therapy.

Job adverts

Junior Research / Technology / Clinician-Scientist Group Leaders (m/f/d)

The HZI, is offering positions for Junior Research / Technology / Clinician-Scientist Group Leaders (m/f/d) in the field of infection research (with W1-professorship and tenure options).

Job adverts

Secretary (m/f/d)

The HZI, Department of Structural Systems and Infection Biology is looking for a secretary.

Job adverts

Equipment and materials management specialist (m/f/d)

The Purchasing and Materials Management department is looking for clerical support as soon as possible.

Job adverts

Buyer / Administrator Purchasing, Equipment and Materials Management (m/f/d)

The Purchasing and Materials Management department is looking for a Buyer / Administrator to start as soon as possible.

Research Group

Integrative Informatics for Infection Biology

Recent years have seen accelerating development of high-throughput technologies in infection biology. Now, thousands of genetic loci can be simultaneously interrogated in a single experiment, providing an array of measurements of transcription, translation, regulatory interactions, and fitness effects. The bottleneck in advancing our understanding of pathogens now lies in moving from hypothesis-free screening through data integration to hypothesis generation. We develop new statistical, computational, and visualization approaches to overcome this bottleneck in the interpretation of complex post-genomic data. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Research Group

Chemical Biology

In their ongoing quest for new therapies against pathogens, scientists are focusing primarily on chemical agents. Discovering new bioactive compounds, characterising their functionality and optimising their properties are the three main goals of the Department of Chemical Biology (CBIO) at the HZI.

Research Group

Biological Barriers and Drug Delivery

While considering the confusing flood of drugs in the pharmacies it is hard to believe in a lack of medication. But there are still many infectious diseases and also cancer that cannot be treated sufficiently. During a medical treatment it is essential that the drug arrives at the envisaged body region. Read more about the research of the department “Biological Barriers and Drug Delivery” on techniques for the correct distribution of novel drugs. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Anti-infectives from Microbiota

The department of Prof Christine Beemelmanns focuses on the identification and functional analysis of novel anti-infective natural products from microbial communities. Co-cultivation studies as well as cell-based assays in combination with chemical-analytical and molecular-biological methods are used to evaluate and prioritize novel natural product producers. The department uses established and innovative metabolomic-, activity and genome-based methods to identify and determine the structure of the secreted natural products. Based on the isolated novel natural substances, the functional analysis and evaluation of their range of effects is carried out. This department is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Cell Biology

Recent reports published by the World Health Organization (WHO) entitled "The Global Burden of Disease" (GBD) highlights the importance of research on host-pathogen interactions. Evolution is an ongoing process driving the development of highly virulent and multi-resistant bacteria strains or so called “emerging pathogens“. A deeper understanding of the complex interaction between pathogenic bacteria and their host is inevitable to face these problems in the future. As Cell biologists, we address host-pathogen interaction on the level of single cells, embodying the smallest living unit on both sides. Upon contact, pathogens need to manipulate the normal behavior of host cells in order to establish a niche for survival and to evade the hosts defense mechanisms. We study these induced changes on the cellular and molecular level, in order to exactly understand which host process is targeted by a given virulence mechanism an why.