Search

Displaying results 61 to 70 of 73.

Research Group

Microbial Proteomics

A genome contains all the information that is needed to build an organism like, for instance, a bacterium. One of functional genomics’ central questions is: How are these blueprints implemented so that relatively simple molecular codes ultimately give rise to a microorganism with the potential of getting us sick? What are some of the underlying mechanisms and under what conditions do they become activated?

Research Group

Biostatistics

High-Throughput-technologies generate large amounts of data. The drawback: these biological and medical data must be processed to results with statistical methods and models. Concepts from robust and computational statistics as well as visualisation techniques help to better understand, estimate and cope with the uncertainty and strong variation that are often inherent in biological and medical data. The project group „Biostatistics“ is part of the research group „Cellular Proteome Research” which is led by Lothar Jänsch.

Research Group

Molecular Structural Biology

Combating infectious diseases depends critically on a deep understanding of the underlying molecular processes. Structural biology plays a crucial role in advancing biomedicine by providing valuable insights into the structure, function, and interactions of biological macromolecules at the atomic and molecular level. It combines state-of-the-art techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) as well as advanced computer-based structure prediction methods to elucidate and analyze the three-dimensional structures of proteins, nucleic acids, and other biomolecules. Thus structural biology plays a critical role in infection research by providing a precise view on virulence factors, host-pathogen interactions, and the mechanisms of pathogenesis and host defense, paving the way towards the development of new anti-infectives and vaccines.

Research Group

RNA Biology of bacterial infections

The Vogel lab strives to chart the diversity of noncoding RNA functions and RNA-binding proteins in major bacterial pathogens and in the hundreds of different bacteria that make up the human microbiome. We develop new RNA deep sequencing-based techniques to capture the RNA world of any microbe, ideally at the single cell level. We want to understand how and why bacteria use RNA as a regulator during infection and exploit this knowledge to target pathogens and edit the microbiota with precision. Projects focus on several bacteria from our major workhorse Salmonella Typhimurium to anaerobic microbes that are associated with colorectal cancer such as Fusobacterium nucleatum. This Department is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Research Group

Ecology and Emergence of Zoonoses

Zoonoses, diseases transmitted between animals and humans, substantially threaten human health, but also domestic animals and wildlife. Influenced by climate change, globalization, anthropogenic disturbance and habitat fragmentation, contacts at human-animal interfaces become more frequent, thus increasing the risk of zoonotic emergence and, ultimately, pandemics. Our research aims to understand emergence and ecology of such zoonoses, i.e., how pathogens are transmitted between populations, landscapes and ecosystems. By incorporating data on the biotic and abiotic context of these transmissions, we generate evidence that allows us to contribute to pandemic preparedness and prevention. This department is located at the Helmholtz Institute for One Health (HIOH) .

Research Group

Nano Infection Biology

Viruses are nanoscale entities. Despite their size and low complexity, they efficiently enter host cells leading to infection and reprogramming of cellular functions. The critical processes involve only a handful of viral and cellular proteins. Yet this contact is critical for the outcome of infection and the cellular immune response. We look at these processes to understand which cellular processes are stimulated by viruses and how the host cell interprets an infecting virus at the molecular level. At the scale of single viruses, these processes, their dynamics and structural conditions remain mostly unclear. We thus use advanced microscopy techniques, which allow us to visualize viral and cellular nanostructures during the infection process.

Research Group

Molecular Cell Biology

The cytoskeleton is responsible for mechanical stabilisation of the cell, for its motility and intracellular transport processes as well as for maintenance and change of its overall shape. The research group Molecular Cell Biology focusses on one specific part of the so called cytoskeleton: the actin cytoskeleton. The dynamics and turnover of filaments of the actin cytoskeleton are particularly relevant for effective immune responses, and are also frequently targeted by pathogens. Understanding the molecular mechanisms mediating assembly and disassembly of this filament system is thus among the main goals of Klemens Rottner and his team.

Research Group

Structure and Function of Proteins

Structural biology is a powerful method to derive an understanding of the molecular basis of biological phenomena by visualizing the involved biomacromolecules at atomic resolution. The Department Structure and Function of Proteins uses protein crystallography to investigate proteins that play a role in infectious disease, e.g. by controlling the production of toxic molecules or by acting as toxins themselves. Our research in structural biology is complemented by biochemical and biophysical methods, and we employ all of these technologies to also aid drug discovery projects at the HZI.

Research Group

Molecular Bacteriology

Hospital-acquired infections are a major challenge and cause suffering, incapacity and death. In many cases the pathogens are resistant to antibiotics and, therefore, very difficult to combat. Read more about how bacteria join forces and what the researchers can do to avoid that. The group Molecular Bacteriology is based at the HZI and the TWINCORE in Hannover.

Research Group

Structural Infection Biology

To understand and eventually manipulate pathways that control the interaction of pathogens (e.g. bacteria, virus, parasite) with their hosts (e.g. human, plants) requires an interdisciplinary research approach, which often combines different fields of research such as cell biology and microbiology. In our laboratory, however, we take a closer look at the processes occurring during an infection at the cellular and atomic level by harnessing a variety of modern biophysical methods that allow addressing the spatio-temporal dynamics of an infectious disease at a high resolution. The department is located at the Center for Structural Systems Biology ( CSSB ) at the heart of the Germany’s largest accelerator center DESY (Deutsches Elektronen-Synchrotron) in Hamburg.