Search

Displaying results 51 to 60 of 73.

Research Group

Personalised Immunotherapy

Our motivation is to address fundamental questions of human immunology and translate them into personalized therapies and diagnostics. Specifically, our laboratory discovers new applications of antibodies and B cells to treat and prevent human infectious diseases. Effective vaccines against some viruses that escape antibody responses remain elusive. To tackle this challenge, we develop methods to better understand B cell responses, the cells that produce antibodies. We design tailored vaccines and provide novel solutions for infection diagnostics. This Department is located at the Centre for Individualised Infection Medicine ( CiiM ).

Research Group

Computational Biology for Individualised Medicine

Infections are among the biggest threats to health and the most significant causes of death worldwide. Our aim is to reveal the host genetic risk factors and their downstream molecular pathways, which are crucial to make progress in understanding and treating infectious diseases in an individualised manner as well as to improve the identification of patients at risk. The department is part of the developing CiiM and currently housed at the TWINCORE in Hannover.

Research Group

Dynamics of Respiratory Infections

Several chronic inflammatory diseases of the lung have been recently associated with alterations in the composition of the airway microbiome. Moreover, the lung microbiota can be classified according to its predominance either of proinflammatory bacteria, such as strains from the genera S taphylococcus, Pseudomonas , and Haemophilus or of low-stimulatory bacteria from genera like Prevotella, Streptococcus , and Veillonella . Moreover, it is already known that the commensal lung microbiota can influence host immune system activation by producing numerous structural ligands and metabolites such as lipopolysaccharide, peptidoglycan, and secondary metabolites. However, the interaction between the lung microbiota and the airway epithelium, as well as their interactions with pulmonary pathogens, are not well understoo

Research Group

Pathogen Evolution

Ecological interactions that underpin human life are highly dynamic, and changes in complex ecosystems can have far-reaching consequences on human health. Therefore, One Health also has a very strong evolutionary component. Over the last decades, evolutionary biology concepts have provided a major contribution towards unveiling the short- and long-term dynamics of pathogen emergence and spread. The importance of evolutionary approaches has become particularly evident during the COVID-19 pandemic. Both the initial emergence event and the later spread and evolution of SARS-CoV-2 have been investigated using evolutionary genomics – with the rise of variants of concern (VOC) being pointed out in the first place by observational data and inferential statistics. The Department of Pathogen Evolution studies both current and historical samples and uses them to make targeted predictions about the potential spread of important pathogens, thus providing important contributions to public health. The department is located at the Helmholtz Institute for One Health .

Research Group

Epidemiology

Epidemiology conducts research on health and disease at the population level – infection epidemiology is concerned with contagious diseases. Their tools and methods are systematic queries, clinical examinations and laboratory diagnostic documentation for both healthy and afflicted individuals, as well as statistical analysis of the compiled data. Causes and risk factors for infections can thus be identified. Infectious diseases epidemiology contributes to the development of preventive measures, early detection and therapy for diseases. Moreover, it examines the efficacy of such measures. Thus epidemiology ties in with scientific findings in basic research as well as medicine, and examines these processes at the population level.

Research Group

Integrative Informatics for Infection Biology

Recent years have seen accelerating development of high-throughput technologies in infection biology. Now, thousands of genetic loci can be simultaneously interrogated in a single experiment, providing an array of measurements of transcription, translation, regulatory interactions, and fitness effects. The bottleneck in advancing our understanding of pathogens now lies in moving from hypothesis-free screening through data integration to hypothesis generation. We develop new statistical, computational, and visualization approaches to overcome this bottleneck in the interpretation of complex post-genomic data. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Research Group

Experimental Virology

Viruses are tiny vehicles that transport biological information to reprogram the functions of human, animal, or plant cells in order to replicate. So-called "enveloped" viruses consist of only one layer of proteins, are filled with genetic material, and are surrounded by a thin shell of lipids in which viral proteins are embedded. Even though viruses are tiny and have a simple build, viral pathogens such as the hepatitis C virus (HCV), respiratory syncytial virus (RSV), and SARS-CoV-2 have the potential to threaten the health of millions of people. Here at the Institute for Experimental Virology, we focus on fundamental and translational RNA virus research. Our research groups combine the expertise of molecular and cell biological approaches with computational methods to help elucidate viral replication mechanisms to develop new therapeutic and preventive strategies.

Research Group

Genome Architecture and Evolution of RNA Viruses

RNA viruses are a major threat to human health and responsible for millions of deaths each year. Their replication is orchestrated by the RNA genome, which encodes for viral proteins needed to hijack the host cell. Traditionally, infectious disease research has focused on blocking viral replication by inhibiting these proteins. However, we now appreciate that the genomes of RNA viruses are not just passive carriers of protein coding information, but active participants in the viral infection process through the action of non-coding RNA. We study the structure and function of viral non-coding RNA, with the goal of harnessing the resulting knowledge in the design of next generation RNA-based therapies. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI) .

Research Group

Computational Biology for Infection Research

The Department of “Computational Biology for Infection Research” studies the human microbiome, viral and bacterial pathogens, and human cell lineages within individual patients by analysis of large-scale biological and epidemiological data sets with computational techniques. Focusing on high throughput meta’omics, population genomic and single cell sequencing data, we produce testable hypotheses, such as sets of key sites or relevant genes associated with the presence of a disease, of antibiotic resistance or pathogenic evasion of immune defense. We interact with experimental collaborators to verify our findings and to promote their translation into medical treatment or diagnosis procedures. To achieve its research goals, the department also develops novel algorithms and software.

Research Group

Microbial Interactions and Processes

Microorganisms in the environment are living in complex and interacting communities. Also the surfaces of the human body are inhabited by microorganisms, where the bacterial cell number significantly exceeds that of the human cells. These communities have co-evolved with the human host and are important for human health. They can, however, also be a reservoir for pathogenic microorganisms.