Search

Displaying results 71 to 80 of 82.

Research Group

Recoding Mechanisms in Infections

Many important viruses such as Ebola, Influenza, and HIV use RNA as genetic material. These viruses have an extremely small genome size compared to the eukaryotic host genomes, and therefore employ various alternative translation strategies such as stop codon read through, leaky scanning, non-IRES initiation and ribosome frameshifting to express their genes by the host translation machinery. Interestingly, the same strategies are also used in the host’s cellular gene expression. With our research we aim to understand how translational recoding changes the rules of standard decoding, allows simultaneous encoding of multiple proteins from the same mRNA and regulates gene expression in time and space. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Research Group

Core Facility of Comparative Medicine

To be able to investigate diseases, understand the relationships between pathogens and their host and to develop novel strategies against pathogens, the scientists at the HZI depend on experiments that involve the use of laboratory animals. For this purpose, the HZI operates a central animal facility on campus. The primary task of this service unit is the breeding and keeping of laboratory mice as well as provision of services for the scientists of the HZI, centered around laboratory animal science.

Research Group

Vaccinology and Applied Microbiology

Vaccination is the most efficient strategy to prevent infectious diseases. The art of the vaccine researcher lies in finding substances that prevent us from falling ill with diseases such as influenza or viral hepatitis. But what makes a vaccine successful and ensures effective protection? Our scientists study the reaction of the immune system to answer that question – and to develop better vaccination strategies.

Research Group

Structural Infection Biology

To understand and eventually manipulate pathways that control the interaction of pathogens (e.g. bacteria, virus, parasite) with their hosts (e.g. human, plants) requires an interdisciplinary research approach, which often combines different fields of research such as cell biology and microbiology. In our laboratory, however, we take a closer look at the processes occurring during an infection at the cellular and atomic level by harnessing a variety of modern biophysical methods that allow addressing the spatio-temporal dynamics of an infectious disease at a high resolution. The department is located at the Center for Structural Systems Biology ( CSSB ) at the heart of the Germany’s largest accelerator center DESY (Deutsches Elektronen-Synchrotron) in Hamburg.

Research Group

Virology and Innate Immunity

Pathogens (germs) infiltrate our bodies daily but do not remain undetected. They encounter the strong defenses of our immune system, which recognizes invaders and promptly takes appropriate measures. However, many pathogens can produce life-long infections even with an intact immune system. The herpesvirus family is one such group of pathogens. Upon infection, herpesviruses establish a chronic infection and become lifelong companions.

Research Group

Viral Immunology

“Back then, I wasn’t ill so often”: With advancing age not only the skin loses its elasticity – many organs lose their functions. So does the immune system: Defense cells do not react promptly anymore, and immunological memory is not established. As a result, we are poorly protected by vaccines and more susceptible to infections, but at the same time suffer from inflammatory disease. While the mechanisms of immune aging remain unknown, chronic viral infections are environmental factors that may accelerate the age-related changes of the immune system. Read more about how pathogens may have an impact on the real age of our immune system.

Research Group

Synthetic biology of microbial natural products

The Bozhüyük group focuses on bacterial natural products, with unique structures and bioactive properties. The group studies modular assembly lines like polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs), which produce many essential clinical agents – but are especially valuable to develop new anti-infectives. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Structure and Function of Proteins

Structural biology is a powerful method to derive an understanding of the molecular basis of biological phenomena by visualizing the involved biomacromolecules at atomic resolution. The Department Structure and Function of Proteins uses protein crystallography to investigate proteins that play a role in infectious disease, e.g. by controlling the production of toxic molecules or by acting as toxins themselves. Our research in structural biology is complemented by biochemical and biophysical methods, and we employ all of these technologies to also aid drug discovery projects at the HZI.

Research Group

Cellular Proteome Research

Pathogenic bacteria and viruses utilize and manipulate cellular processes of our immune system. The identification of protein functions in the human immune system that decisively control the progression of infections constitutes the central aim of the research group Cellular Proteomics at the HZI.

Research Group

Proteome Analytics

Pathogenic bacteria and viruses utilize and manipulate cellular processes of our immune system. The identification of protein functions in the human immune system that decisively control the progression of infections constitutes the central aim of the research group Cellular Proteomics at the HZI.