Search

Displaying results 171 to 180 of 231.

Research Group

Molecular Cell Biology

The cytoskeleton is responsible for mechanical stabilisation of the cell, for its motility and intracellular transport processes as well as for maintenance and change of its overall shape. The research group Molecular Cell Biology focusses on one specific part of the so called cytoskeleton: the actin cytoskeleton. The dynamics and turnover of filaments of the actin cytoskeleton are particularly relevant for effective immune responses, and are also frequently targeted by pathogens. Understanding the molecular mechanisms mediating assembly and disassembly of this filament system is thus among the main goals of Klemens Rottner and his team.

Research Group

Molecular Structural Biology

Combating infectious diseases depends critically on a deep understanding of the underlying molecular processes. Structural biology plays a crucial role in advancing biomedicine by providing valuable insights into the structure, function, and interactions of biological macromolecules at the atomic and molecular level. It combines state-of-the-art techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) as well as advanced computer-based structure prediction methods to elucidate and analyze the three-dimensional structures of proteins, nucleic acids, and other biomolecules. Thus structural biology plays a critical role in infection research by providing a precise view on virulence factors, host-pathogen interactions, and the mechanisms of pathogenesis and host defense, paving the way towards the development of new anti-infectives and vaccines.

Research Group

Molecular Bacteriology

Hospital-acquired infections are a major challenge and cause suffering, incapacity and death. In many cases the pathogens are resistant to antibiotics and, therefore, very difficult to combat. Read more about how bacteria join forces and what the researchers can do to avoid that. The group Molecular Bacteriology is based at the HZI and the TWINCORE in Hannover.

Pages

HZI spin-offs at a glance

HZI spin-offs at a glance Scientists at the HZI regularly and successfully transfer their results and technologies into start-ups and spin-offs. Here we present some of the companies. Leopard Biosciences GmbH SORMAS Foundation gGmbH InSCREENeX GmbH MyxoTech…

Pages

About HIRI

© Adobe Stock / Christoph Burgstedt Increasing antibiotic resistance, chronic infections and emerging pathogens pose major challenges for the public health system. While the central importance of RNA in regulatory and sensory cell processes has become…

Pages

Tuberculosis

Tuberculosis – a silent pandemic © HZI/Manfred Rohde Tuberculosis Tuberculosis is one of the „big three“ infectious diseases, together with AIDS and Malaria. In Europe, tuberculosis is almost forgotten, the times of the “The Lady of the Camellias” and…

Research Group

Experimental Immunology

Immune cell populations are characterized by a high degree of heterogeneity to enable efficient and specialized responses to the diverse set of pathogens. This is particularly true for cells of the adaptive immune system, but also innate immune cell populations are heterogeneous and can adapt to different environmental conditions. Adaptation of immune cells is often associated with epigenetic alterations that lead to the fixation of gene expression patterns, finally resulting in cells with highly specialized fates, phenotypes and functional properties.

Research Group

Immune Regulation

Due to their physiological functions our mucosal surfaces are in direct contact to the environment and thus represent the major port of entry for pathogens. To protect the body from severe infections an effective mucosal immune system is indispensable. We are studying respiratory tract infections with the focus on influenza and pneumococci, which represent the most frequent viral and bacterial infectious agents for pneumonia in humans. A major focus of our research is to study molecular and cellular processes during coinfection with influenza and pneumococci and here in particular the immunological functions of the alveolar epithelium in host defense.

Research Group

Cellular Metabolism in Infection

With a focus on applying mass spectrometry and tracing approaches, the research group “Cellular Metabolism in Infection” (CMII) headed by Prof Thekla Cordes tracks metabolic pathways, leading to discoveries about the role of small molecules influencing immune cell metabolism and function.

Research Group

Actinobacteria Metabolic Engineering

The growing resistance towards established antibiotics presents a serious problem especially with infectious diseases. The development of new drugs is mainly based on known molecules and mechanisms, which allows bacteria to assimilate rapidly. Hence, scientists are looking for novel drugs. At the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , a site of the Helmholtz Centre for Infection Research (HZI) at Braunschweig, the researchers develop new pathways, by which they force actinomycetes to produce hitherto unknown compounds.