Search

Displaying results 131 to 140 of 231.

Research Group

Experimental Infection Research

If we are attacked by a virus, the immune system reacts within a matter of hours. Highly specialized immune cells recognise the pathogen and release highly efficient messengers, which activate the immune system. These messengers include the interferons, which ensure that individual host cells are mildly infected . At the same time, interferons can also influence the course of the immune response and the memory of the immune system. Without these messengers virus infections - which we normally overcome almost unnoticeably - become fatal within just a few days. The group Experimental Infection Research is based at the TWINCORE in Hannover.

Research Group

Evolutionary Community Ecology

Humans are increasingly part of these interaction networks and pathogen transmission from animals to humans is occurring at increasing rates. Indeed, emerging zoonotic disease are an increasing threat to human health and most of these diseases have their origins in wildlife. Microorganisms and their associated diseases also influence animal populations’ persistence and conservation, with some spilling over to animals from humans as well. The research group ‘evolutionary community ecology’ explores how the changing composition of animal communities has cascading impacts on their microbial communities, diseases, and rates of transmission, including to humans. The department is located at the Helmholtz Institute for One Health .

Research Group

Epidemiology and ecology of antimicrobial resistance

Due to the interconnectedness between humans, animals and the environment, as well as the rapid potential for antimicrobial resistance to spread between bacterial species, we need a One Health approach to adequately address the threat of antibiotic resistance. This department is based at the Helmholtz Institute for One Health .

Research Group

Single-cell Analysis

Pathogenic bacteria can reside in a mammalian host for a life-long period and chronic carriers form a reservoir leading to recurrent infections. Despite the importance of chronic infections for public health, how a subset of pathogens escape the host’s immune surveillance and how the host contains the spread of bacteria are still poorly understood. Scientists within the Single-Cell Analysis group develop and use single-cell transcriptomics and computational approaches to decipher the microenvironments of individual pathogens and ultimately their functional consequences on infection outcome. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Research Group

Dynamics of Respiratory Infections

Several chronic inflammatory diseases of the lung have been recently associated with alterations in the composition of the airway microbiome. Moreover, the lung microbiota can be classified according to its predominance either of proinflammatory bacteria, such as strains from the genera S taphylococcus, Pseudomonas , and Haemophilus or of low-stimulatory bacteria from genera like Prevotella, Streptococcus , and Veillonella . Moreover, it is already known that the commensal lung microbiota can influence host immune system activation by producing numerous structural ligands and metabolites such as lipopolysaccharide, peptidoglycan, and secondary metabolites. However, the interaction between the lung microbiota and the airway epithelium, as well as their interactions with pulmonary pathogens, are not well understood.

Research Group

Chemical Biology

In their ongoing quest for new therapies against pathogens, scientists are focusing primarily on chemical agents. Discovering new bioactive compounds, characterising their functionality and optimising their properties are the three main goals of the Department of Chemical Biology (CBIO) at the HZI.

Research Group

Biological Barriers and Drug Delivery

While considering the confusing flood of drugs in the pharmacies it is hard to believe in a lack of medication. But there are still many infectious diseases and also cancer that cannot be treated sufficiently. During a medical treatment it is essential that the drug arrives at the envisaged body region. Read more about the research of the department “Biological Barriers and Drug Delivery” on techniques for the correct distribution of novel drugs. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Anti-infectives from Microbiota

The department of Prof Christine Beemelmanns focuses on the identification and functional analysis of novel anti-infective natural products from microbial communities. Co-cultivation studies as well as cell-based assays in combination with chemical-analytical and molecular-biological methods are used to evaluate and prioritize novel natural product producers. The department uses established and innovative metabolomic-, activity and genome-based methods to identify and determine the structure of the secreted natural products. Based on the isolated novel natural substances, the functional analysis and evaluation of their range of effects is carried out. This department is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Pages

Transfer of Knowledge

Transfer of Knowledge The HZI's research program places particular emphasis on the effective transfer of research results into clinical and industrial applications . In addition, the transfer of knowledge to society also plays a major role for us. The…

Pages

Biological Barriers

Biological Barriers © HZI/Manfred Rohde Electron micrograph of macrophages. Why is it that you can't just take insulin as a tablet? The answer: Biological barriers. Millions of diabetics have to administer this pancreatic hormone by daily injections.…