Search

Displaying results 661 to 670 of 673.

Research Group

Genome Analytics

The Genome Analytics (GMAK) facility provides next-generation sequencing (NGS) technology to the HZI. External users may also have access to the technology, e.g. upon collaborative arrangements. In addition to sample DNA/RNA quality check, library preparation and sequencing, the facility provides primary data processing, data quality check and analysis. A number of pipelines for secondary data processing are established.

Research Group

Experimental Immunology

Immune cell populations are characterized by a high degree of heterogeneity to enable efficient and specialized responses to the diverse set of pathogens. This is particularly true for cells of the adaptive immune system, but also innate immune cell populations are heterogeneous and can adapt to different environmental conditions. Adaptation of immune cells is often associated with epigenetic alterations that lead to the fixation of gene expression patterns, finally resulting in cells with highly specialized fates, phenotypes and functional properties.

Research Group

Immune Regulation

Due to their physiological functions our mucosal surfaces are in direct contact to the environment and thus represent the major port of entry for pathogens. To protect the body from severe infections an effective mucosal immune system is indispensable. We are studying respiratory tract infections with the focus on influenza and pneumococci, which represent the most frequent viral and bacterial infectious agents for pneumonia in humans. A major focus of our research is to study molecular and cellular processes during coinfection with influenza and pneumococci and here in particular the immunological functions of the alveolar epithelium in host defense.

News

Research Group

Infection Immunology

An infection can be seen as a fight between a microbe and our body’s defence mechanisms. The microbe is trying to multiply and disseminate, while the different components of our immune system will work together trying to stop this process. This is not an easy mission for our body because microbes have learned how to hide, evade or even destroy some of the components of the immune system as well as how to resist antibiotic treatment. The focus of our research is to understand the battle between microbes and our immune defences. If we know the different tricks and mechanisms employed by the microbes to breach our defences we will be able to design new strategies to counteract and disarm the attacking microorganisms.

Research Group

Innovative Organoid Research

Organoids are miniature models of human organs cultivated from stem cells in laboratory settings. These delicate tissue structures mimic the three-dimensional architecture and function of real organs, offering researchers a unique opportunity to enhance their understanding of biological processes. Our aim is to advance the development of highly complex organoids incorporating immune cells and vessels. By doing so, we establish a platform, especially for investigating infections, conducting vaccine tests, and innovating therapeutic approaches.

Research Group

Clinical Bioinformatics

The Department “Clinical Bioinformatics” is concerned with analyzing molecular information using computer-based methods such as machine learning, artificial intelligence, or other algorithms. Its focus lies on spatially and temporally resolved processes to help understand how bacteria, as producers of natural products, interact with humans and can trigger or even protect against disease. This department is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Biosafety Level 3 Laboratory

Biological agents of risk group 3 (RG3) pose a constant global as well as national challenge because they cause severe illnesses in humans against which there are usually no effective preventive or treatment measures. Since these pathogens can only be handled in special biosafety level 3 (BSL3) laboratories, the modern BSL3 laboratories at the HZI provide a technology platform that is indispensable in today's infection research - only in this way can our scientists develop new therapies, prevention measures or diagnostic procedures against these pathogens.

Research Group

LncRNA and Infection Biology

RNA is a truly remarkable molecule with functions and activities far beyond that of an intermediate information carrier. The abundant class of long non-coding RNAs (lncRNAs) contains highly specialized RNA with structural or regulatory functions that range from assembling large protein complexes to localizing, sequestering, or allosterically modifying proteins and other interaction partners. Our genome contains thousands of lncRNAs, many of which are specifically regulated during bacterial or viral infections. However, their contribution to launching and sustaining an effective host response remains elusive. Our group combines a cutting-edge suite of technologies from the fields of biochemistry, genomics, molecular biology, and computational biology to decode how lncRNA work mechanistically and how they contribute to host defense mechanisms. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Research Group

Cellular Metabolism in Infection

With a focus on applying mass spectrometry and tracing approaches, the research group “Cellular Metabolism in Infection” (CMII) headed by Prof Thekla Cordes tracks metabolic pathways, leading to discoveries about the role of small molecules influencing immune cell metabolism and function.