Search

Displaying results 211 to 220 of 222.

Research Group

Genome Architecture and Evolution of RNA Viruses

RNA viruses are a major threat to human health and responsible for millions of deaths each year. Their replication is orchestrated by the RNA genome, which encodes for viral proteins needed to hijack the host cell. Traditionally, infectious disease research has focused on blocking viral replication by inhibiting these proteins. However, we now appreciate that the genomes of RNA viruses are not just passive carriers of protein coding information, but active participants in the viral infection process through the action of non-coding RNA. We study the structure and function of viral non-coding RNA, with the goal of harnessing the resulting knowledge in the design of next generation RNA-based therapies. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI) .

Research Group

Computational Biology for Infection Research

The Department of “Computational Biology for Infection Research” studies the human microbiome, viral and bacterial pathogens, and human cell lineages within individual patients by analysis of large-scale biological and epidemiological data sets with computational techniques. Focusing on high throughput meta’omics, population genomic and single cell sequencing data, we produce testable hypotheses, such as sets of key sites or relevant genes associated with the presence of a disease, of antibiotic resistance or pathogenic evasion of immune defense. We interact with experimental collaborators to verify our findings and to promote their translation into medical treatment or diagnosis procedures. To achieve its research goals, the department also develops novel algorithms and software.

Research Group

Microbial Interactions and Processes

Microorganisms in the environment are living in complex and interacting communities. Also the surfaces of the human body are inhabited by microorganisms, where the bacterial cell number significantly exceeds that of the human cells. These communities have co-evolved with the human host and are important for human health. They can, however, also be a reservoir for pathogenic microorganisms.

Research Group

Microbial Proteomics

A genome contains all the information that is needed to build an organism like, for instance, a bacterium. One of functional genomics’ central questions is: How are these blueprints implemented so that relatively simple molecular codes ultimately give rise to a microorganism with the potential of getting us sick? What are some of the underlying mechanisms and under what conditions do they become activated?

Research Group

Biostatistics

High-Throughput-technologies generate large amounts of data. The drawback: these biological and medical data must be processed to results with statistical methods and models. Concepts from robust and computational statistics as well as visualisation techniques help to better understand, estimate and cope with the uncertainty and strong variation that are often inherent in biological and medical data. The project group „Biostatistics“ is part of the research group „Cellular Proteome Research” which is led by Lothar Jänsch.

Research Group

Molecular Bacteriology

Hospital-acquired infections are a major challenge and cause suffering, incapacity and death. In many cases the pathogens are resistant to antibiotics and, therefore, very difficult to combat. Read more about how bacteria join forces and what the researchers can do to avoid that. The group Molecular Bacteriology is based at the HZI and the TWINCORE in Hannover.

Research Group

Molecular Structural Biology

Combating infectious diseases depends critically on a deep understanding of the underlying molecular processes. Structural biology plays a crucial role in advancing biomedicine by providing valuable insights into the structure, function, and interactions of biological macromolecules at the atomic and molecular level. It combines state-of-the-art techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) as well as advanced computer-based structure prediction methods to elucidate and analyze the three-dimensional structures of proteins, nucleic acids, and other biomolecules. Thus structural biology plays a critical role in infection research by providing a precise view on virulence factors, host-pathogen interactions, and the mechanisms of pathogenesis and host defense, paving the way towards the development of new anti-infectives and vaccines.

Research Group

Molecular Cell Biology

The cytoskeleton is responsible for mechanical stabilisation of the cell, for its motility and intracellular transport processes as well as for maintenance and change of its overall shape. The research group Molecular Cell Biology focusses on one specific part of the so called cytoskeleton: the actin cytoskeleton. The dynamics and turnover of filaments of the actin cytoskeleton are particularly relevant for effective immune responses, and are also frequently targeted by pathogens. Understanding the molecular mechanisms mediating assembly and disassembly of this filament system is thus among the main goals of Klemens Rottner and his team.

Research Group

Nano Infection Biology

Viruses are nanoscale entities. Despite their size and low complexity, they efficiently enter host cells leading to infection and reprogramming of cellular functions. The critical processes involve only a handful of viral and cellular proteins. Yet this contact is critical for the outcome of infection and the cellular immune response. We look at these processes to understand which cellular processes are stimulated by viruses and how the host cell interprets an infecting virus at the molecular level. At the scale of single viruses, these processes, their dynamics and structural conditions remain mostly unclear. We thus use advanced microscopy techniques, which allow us to visualize viral and cellular nanostructures during the infection process.

Research Group

Ecology and Emergence of Zoonoses

Zoonoses, diseases transmitted between animals and humans, substantially threaten human health, but also domestic animals and wildlife. Influenced by climate change, globalization, anthropogenic disturbance and habitat fragmentation, contacts at human-animal interfaces become more frequent, thus increasing the risk of zoonotic emergence and, ultimately, pandemics. Our research aims to understand emergence and ecology of such zoonoses, i.e., how pathogens are transmitted between populations, landscapes and ecosystems. By incorporating data on the biotic and abiotic context of these transmissions, we generate evidence that allows us to contribute to pandemic preparedness and prevention. This department is located at the Helmholtz Institute for One Health (HIOH) .