Search

Displaying results 21 to 30 of 679.

Research Group

RNA Biology of bacterial infections

The Vogel lab strives to chart the diversity of noncoding RNA functions and RNA-binding proteins in major bacterial pathogens and in the hundreds of different bacteria that make up the human microbiome. We develop new RNA deep sequencing-based techniques to capture the RNA world of any microbe, ideally at the single cell level. We want to understand how and why bacteria use RNA as a regulator during infection and exploit this knowledge to target pathogens and edit the microbiota with precision. Projects focus on several bacteria from our major workhorse Salmonella Typhimurium to anaerobic microbes that are associated with colorectal cancer such as Fusobacterium nucleatum. This Department is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Research Group

Nano Infection Biology

Viruses are nanoscale entities. Despite their size and low complexity, they efficiently enter host cells leading to infection and reprogramming of cellular functions. The critical processes involve only a handful of viral and cellular proteins. Yet this contact is critical for the outcome of infection and the cellular immune response. We look at these processes to understand which cellular processes are stimulated by viruses and how the host cell interprets an infecting virus at the molecular level. At the scale of single viruses, these processes, their dynamics and structural conditions remain mostly unclear. We thus use advanced microscopy techniques, which allow us to visualize viral and cellular nanostructures during the infection process.

Research Group

Drug Design and Optimization

In order to combat the increasing number of resistant pathogens, the development of new anti-infective drugs is an important goal for pharmaceutical research. Efficient medications with novel modes-of-action to fight infectious diseases are urgently needed. Below, you may read more about the design, identification and optimisation of new drug candidates. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Drug Bioinformatics

Bioinformatics is instrumental in all areas of molecular biology, from analysis of genome sequences towards predicting three-dimensional structure of drug-target complexes. We apply cutting-edge bioinformatics and computer science techniques for discovery of novel resistance mechanisms and predicting mode-of-action of bioactive compounds. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)

Research Group

Microbial Natural Products

Even today efficient drugs against many diseases are missing but finding new active substances is very complex. Support comes out of the ground. Myxobacteria are soil-living microorganisms that produce many active agents. Here you learn more about the search for new compounds with biological activity. This department is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Genome Mining for Secondary Metabolites

The misuse of antibiotics on a global scale has led to an ever-growing antibiotic resistance crisis. Novel antimicrobial compounds are urgently needed. Microorganisms are considered to be one of the most prolific sources for natural product drugs including antibiotics. Developing novel genome mining approaches to harness the potential of the underexplored biosynthetic gene pathways and discover novel microbial natural products, is a potential antibiotic resistance crisis mitigation path. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)

Research Group

Clinical Bioinformatics

The Department of Clinical Bioinformatics group is concerned with analyzing molecular information using computer-based methods such as machine learning, artificial intelligence, or other algorithms. Its focus lies on spatially and temporally resolved processes to help understand how bacteria, as producers of natural products, interact with humans and can trigger or even protect against disease. This department is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Human-Microbe Systems Bioinformatics

The human body encompasses fewer human cells than microbes. They constantly interact with each other and the host and greatly affect an individual's health and well-being. In our group, we develop and apply state-of-the-art bioinformatics software to study the human-microbe systems and aim to discover natural products involved in communication between the two realms. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Chemical Biology of Carbohydrates

Carbohydrates and glycoconjugates belong to the three major classes of biopolymers. Complex carbohydrates play important roles in biological recognition processes that are represented by the presence of dense glycoconjugate layers on cells known as the glycocalyx. Despite their importance, the study of carbohydrates suffers from limited methods for their synthesis and analysis contrary to nucleic acids or proteins. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)

Research Group

Antiviral and Antivirulence Drugs

Work in the Empting lab focuses on tackling innovative and difficult-to-address anti-infective targets such as bacterial virulence regulatory systems as well as un(der)explored anti-herpesviral persitance mediators. By this, we aspire to circumvent common resistance mechanisms and to refill the dried out development pipeline. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)