Search

Displaying results 21 to 30 of 87.

Job adverts

Equipment and materials management specialist (m/f/d)

The Purchasing and Materials Management department is looking for clerical support as soon as possible.

Research Group

Computational Biology for Infection Research

The Department of “Computational Biology for Infection Research” studies the human microbiome, viral and bacterial pathogens, and human cell lineages within individual patients by analysis of large-scale biological and epidemiological data sets with computational techniques. Focusing on high throughput meta’omics, population genomic and single cell sequencing data, we produce testable hypotheses, such as sets of key sites or relevant genes associated with the presence of a disease, of antibiotic resistance or pathogenic evasion of immune defense. We interact with experimental collaborators to verify our findings and to promote their translation into medical treatment or diagnosis procedures. To achieve its research goals, the department also develops novel algorithms and software.

Job adverts

Buyer / Administrator Purchasing, Equipment and Materials Management (m/f/d)

The Purchasing and Materials Management department is looking for a Buyer / Administrator to start as soon as possible.

Research Group

Biostatistics

High-Throughput-technologies generate large amounts of data. The drawback: these biological and medical data must be processed to results with statistical methods and models. Concepts from robust and computational statistics as well as visualisation techniques help to better understand, estimate and cope with the uncertainty and strong variation that are often inherent in biological and medical data. The project group „Biostatistics“ is part of the research group „Cellular Proteome Research” which is led by Lothar Jänsch.

Research Group

Experimental Immunology

Immune cell populations are characterized by a high degree of heterogeneity to enable efficient and specialized responses to the diverse set of pathogens. This is particularly true for cells of the adaptive immune system, but also innate immune cell populations are heterogeneous and can adapt to different environmental conditions. Adaptation of immune cells is often associated with epigenetic alterations that lead to the fixation of gene expression patterns, finally resulting in cells with highly specialized fates, phenotypes and functional properties.

Research Group

Pathogen Evolution

Ecological interactions that underpin human life are highly dynamic, and changes in complex ecosystems can have far-reaching consequences on human health. Therefore, One Health also has a very strong evolutionary component. Over the last decades, evolutionary biology concepts have provided a major contribution towards unveiling the short- and long-term dynamics of pathogen emergence and spread. The importance of evolutionary approaches has become particularly evident during the COVID-19 pandemic. Both the initial emergence event and the later spread and evolution of SARS-CoV-2 have been investigated using evolutionary genomics – with the rise of variants of concern (VOC) being pointed out in the first place by observational data and inferential statistics. The Department of Pathogen Evolution studies both current and historical samples and uses them to make targeted predictions about the potential spread of important pathogens, thus providing important contributions to public health. The department is located at the Helmholtz Institute for One Health .

Research Group

Biosafety Level 3 Laboratory

Biological agents of risk group 3 (RG3) pose a constant global as well as national challenge because they cause severe illnesses in humans against which there are usually no effective preventive or treatment measures. Since these pathogens can only be handled in special biosafety level 3 (BSL3) laboratories, the modern BSL3 laboratories at the HZI provide a technology platform that is indispensable in today's infection research - only in this way can our scientists develop new therapies, prevention measures or diagnostic procedures against these pathogens.

Research Group

Clinical Bioinformatics

The Department “Clinical Bioinformatics” is concerned with analyzing molecular information using computer-based methods such as machine learning, artificial intelligence, or other algorithms. Its focus lies on spatially and temporally resolved processes to help understand how bacteria, as producers of natural products, interact with humans and can trigger or even protect against disease. This department is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Integrative Informatics for Infection Biology

Recent years have seen accelerating development of high-throughput technologies in infection biology. Now, thousands of genetic loci can be simultaneously interrogated in a single experiment, providing an array of measurements of transcription, translation, regulatory interactions, and fitness effects. The bottleneck in advancing our understanding of pathogens now lies in moving from hypothesis-free screening through data integration to hypothesis generation. We develop new statistical, computational, and visualization approaches to overcome this bottleneck in the interpretation of complex post-genomic data. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Research Group

Innovative Organoid Research

Organoids are miniature models of human organs cultivated from stem cells in laboratory settings. These delicate tissue structures mimic the three-dimensional architecture and function of real organs, offering researchers a unique opportunity to enhance their understanding of biological processes. Our aim is to advance the development of highly complex organoids incorporating immune cells and vessels. By doing so, we establish a platform, especially for investigating infections, conducting vaccine tests, and innovating therapeutic approaches.