Search

Displaying results 611 to 620 of 679.

Research Group

Biological Barriers and Drug Delivery

While considering the confusing flood of drugs in the pharmacies it is hard to believe in a lack of medication. But there are still many infectious diseases and also cancer that cannot be treated sufficiently. During a medical treatment it is essential that the drug arrives at the envisaged body region. Read more about the research of the department “Biological Barriers and Drug Delivery” on techniques for the correct distribution of novel drugs. This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Anti-infectives from Microbiota

The department of Prof Christine Beemelmanns focuses on the identification and functional analysis of novel anti-infective natural products from microbial communities. Co-cultivation studies as well as cell-based assays in combination with chemical-analytical and molecular-biological methods are used to evaluate and prioritize novel natural product producers. The department uses established and innovative metabolomic-, activity and genome-based methods to identify and determine the structure of the secreted natural products. Based on the isolated novel natural substances, the functional analysis and evaluation of their range of effects is carried out. This department is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) .

Research Group

Cell Biology

Recent reports published by the World Health Organization (WHO) entitled "The Global Burden of Disease" (GBD) highlights the importance of research on host-pathogen interactions. Evolution is an ongoing process driving the development of highly virulent and multi-resistant bacteria strains or so called “emerging pathogens“. A deeper understanding of the complex interaction between pathogenic bacteria and their host is inevitable to face these problems in the future. As Cell biologists, we address host-pathogen interaction on the level of single cells, embodying the smallest living unit on both sides. Upon contact, pathogens need to manipulate the normal behavior of host cells in order to establish a niche for survival and to evade the hosts defense mechanisms. We study these induced changes on the cellular and molecular level, in order to exactly understand which host process is targeted by a given virulence mechanism an why.

Research Group

Host-Pathogen-Microbiota Interactions

The importance of RNA in maintaining cellular physiology by controlling gene expression in response to intrinsic and external cues has long been underestimated. Now, numerous human diseases have been linked to RNA functioning. Likewise, we now know that bacterial pathogens harness a large suite of noncoding RNA molecules to adapt to environmental stress and to precisely regulate their virulence programs. In an era of antibiotic crisis, it is essential to discover alternative combat strategies against pathogenic bacteria — ideally ones that spare the beneficial microbial species. The high specificity of RNA molecules provides great potential for achieving these goals. This group is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Persons

Prof Dr Yang Li

Research Group Leader
Computational Biology for Individualised Medicine
CiiM
Persons

Prof Dr Yang Li

Research Group

RNA Synthetic Biology

RNA is a ubiquitous molecule of life that plays intimate roles in how cells function and make decisions. These same properties can be harnessed to create a new generation of engineering tools to further interrogate the properties of biology and control how cells behave. The “RNA synthetic biology” group aims to better understand the roles RNA plays in biology and to exploit these roles to improve how we study, diagnose, and treat infectious diseases in humans. This department is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).

Research Group

Structural Infection Biology

To understand and eventually manipulate pathways that control the interaction of pathogens (e.g. bacteria, virus, parasite) with their hosts (e.g. human, plants) requires an interdisciplinary research approach, which often combines different fields of research such as cell biology and microbiology. In our laboratory, however, we take a closer look at the processes occurring during an infection at the cellular and atomic level by harnessing a variety of modern biophysical methods that allow addressing the spatio-temporal dynamics of an infectious disease at a high resolution. The department is located at the Center for Structural Systems Biology ( CSSB ) at the heart of the Germany’s largest accelerator center DESY (Deutsches Elektronen-Synchrotron) in Hamburg.

Research Group

Structure and Function of Proteins

Structural biology is a powerful method to derive an understanding of the molecular basis of biological phenomena by visualizing the involved biomacromolecules at atomic resolution. The Department Structure and Function of Proteins uses protein crystallography to investigate proteins that play a role in infectious disease, e.g. by controlling the production of toxic molecules or by acting as toxins themselves. Our research in structural biology is complemented by biochemical and biophysical methods, and we employ all of these technologies to also aid drug discovery projects at the HZI.

Research Group

RNA Biology of bacterial infections

The Vogel lab strives to chart the diversity of noncoding RNA functions and RNA-binding proteins in major bacterial pathogens and in the hundreds of different bacteria that make up the human microbiome. We develop new RNA deep sequencing-based techniques to capture the RNA world of any microbe, ideally at the single cell level. We want to understand how and why bacteria use RNA as a regulator during infection and exploit this knowledge to target pathogens and edit the microbiota with precision. Projects focus on several bacteria from our major workhorse Salmonella Typhimurium to anaerobic microbes that are associated with colorectal cancer such as Fusobacterium nucleatum . This Department is located at the Helmholtz Institute for RNA-based Infection Research (HIRI).